نانوبلورهایی که نور خورشید را به انرژی تبدیل می‌کنند

گروهی از پژوهشگران ژاپن و چین در یک پژوهش مشترک، نانوبلورهایی ساخته‌اند که می‌توانند نور خورشید را به انرژی تبدیل کنند.

گروهی از پژوهشگران ژاپن و چین در یک پژوهش مشترک، نانوبلورهایی ساخته‌اند که می‌توانند نور خورشید را به انرژی تبدیل کنند.
به گزارش ایسنا، فناوری‌های نوآورانه در تلاش برای رسیدن به یک آینده پایدار، به طور مداوم در حال توسعه هستند تا منابع انرژی تجدیدپذیر را به طور موثرتری مهار کنند.
به نقل از نانو مگزین، گروهی از پژوهشگران «مؤسسه فناوری توکیو»(TITech) در ژاپن و «دانشگاه ملی یانگ مینگ چیائو تونگ»(NYCU) در چین، گام‌های قابل توجهی را در این مسیر برداشته‌اند.
این گروه پژوهشی، پیشگام روشی هستند که طیف‌های نور خورشید را از اشعه فرابنفش گرفته تا فروسرخ نزدیک به طور کامل برای تولید هیدروژن خورشیدی جذب می‌کند. این پژوهش به یک شکاف مهم در فناوری‌های خورشیدی کنونی می‌پردازد که عمدتا طیف فروسرخ نزدیک نور خورشید را نادیده می‌گیرند.
ماهیت نور خورشید شامل طول موج‌های متنوعی است که هر کدام پتانسیل انرژی خود را دارند. فناوری‌های سنتی خورشیدی در بهره‌برداری از طیف‌های فرابنفش و مرئی ماهر بوده‌اند اما طیف فروسرخ نزدیک زیاد مورد استفاده قرار نگرفته است. «تسو فو مارک چانگ» (Tso-Fu Mark Chang) دانشیار مؤسسه فناوری توکیو، «چون یی چن»(Chun-Yi Chen) مدرس این موسسه و پروفسور
«یونگ جونگ هسو»(Yung-Jung Hsu) استاد دانشگاه ملی یانگ مینگ چیائو تونگ برای غلبه بر این چالش، یک پروژه پیشگامانه را آغاز کردند تا پتانسیل طیف فروسرخ نزدیک را بیشتر مورد بررسی قرار دهند.
نوآوری آنها به ایجاد یک نانوبلور «Au@Cu۷S4 yolk@shell» انجامید که یک جهش قابل توجه در تبدیل انرژی خورشیدی بود. پژوهش آنها، پتانسیل این نانوبلور را به عنوان یک منبع انرژی تجدیدپذیر برجسته می‌کند و قدرت تلاش‌های علمی مشترک را نشان می‌دهد.
مرکز این پیشرفت، پدیده‌ای است که به عنوان «تشدید پلاسمون سطحی موضعی»(LSPR) شناخته می‌شود و یک ویژگی نوری متمایز موجود در نانوساختارهای طلا و سولفید مس است. این ویژگی را می‌توان برای جذب طول موج‌های گوناگون از جمله طیف‌های مرئی و فروسرخ نزدیک تنظیم کرد. پژوهشگران با ادغام این مواد، یک فوتوکاتالیست را ابداع کردند که به طیف گسترده‌تری از نور خورشید نسبت به آنچه پیشتر امکان‌پذیر بود، واکنش نشان می‌دهد.هسو و چانگ خاطرنشان کردند: ما متوجه شدیم که تولید هیدروژن مبتنی بر یک طیف گسترده، اخیرا به عنوان یک منبع بالقوه انرژی سبز در حال افزایش است. ما همزمان دیدیم که در حال حاضر گزینه‌های زیادی برای فوتوکاتالیست‌های کنونی وجود ندارند که بتوانند به تابش نور فروسرخ نزدیک واکنش نشان دهند.
پژوهشگران برای غلبه بر این مشکل، از ویژگی‌های مناسب تشدید پلاسمون سطحی موضعی در نانوساختارهای طلا و سولفید مس استفاده کردند. ساخت این نانوبلورهای جدید از طریق یک واکنش تبادل یونی انجام شد. پژوهشگران از روش‌های تحلیلی پیچیده‌ای مانند میکروسکوپ الکترونی عبوری با وضوح بالا، طیف‌سنجی جذب پرتو ایکس و طیف‌سنجی جذب زودگذر برای بررسی ویژگی‌های نانوبلورها استفاده کردند.
این تحلیل‌ها، ساختار yolk@shell نانوبلورها را آشکار کرد که دارای ویژگی‌های نوری پلاسمونی دوگانه است. علاوه بر این، داده‌های طیف‌سنجی فوق سریع نشان دادند که نانوبلورها در معرض نورهای مرئی و فروسرخ نزدیک، حالت‌های بلندمدت جداسازی بار را از خود نشان می‌دهند که پتانسیل آنها را برای تبدیل موثر انرژی خورشیدی ثابت می‌کند.